Throughput Optimal Random Medium Access Control for Relay Networks with Time-Varying Channels

نویسندگان

  • Mehdi Salehi Heydar Abad
  • Özgür Erçetin
  • Eylem Ekici
چکیده

The use of existing network devices as relays has a potential to improve the overall network performance. In this work, we consider a two-hop wireless relay setting, where the channels between the source and relay nodes to the destination node are time varying. The relay nodes are able to overhear the transmissions of the source node which may have a weak connection to the destination, and they help the source node by forwarding its messages to the destination on its behalf, whenever this is needed. We develop a distributed scheme for relay selection and channel access that is suitable for time-varying channels, and prove that this scheme is throughput optimal. We obtain the achievable rate region of our proposed scheme analytically for a relay network with a single source and a single relay node. Meanwhile, for a more general network with more than one relay nodes, we perform Monte-Carlo simulations to obtain the achievable rate region. In both cases, we demonstrate that the achievable rate region attained with our distributed scheme is the same as the one attained with centralized optimal scheme.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Cloud-Assisted Random Linear Network Coding Medium Access Control Protocol for Healthcare Applications

Relay sensor networks are often employed in end-to-end healthcare applications to facilitate the information flow between patient worn sensors and the medical data center. Medium access control (MAC) protocols, based on random linear network coding (RLNC), are a novel and suitable approach to efficiently handle data dissemination. However, several challenges arise, such as additional delays int...

متن کامل

Throughput-optimal scheduling for cooperative relaying in wireless access networks

This article considers the cooperation between base station and relay stations to increase system throughput in time-slotted relaying wireless networks, such as dynamic time division multiple access systems. We focus on optimal throughput scheduling policies for the cooperative relaying at the network layer level. It is shown that the resulting policy for this cooperative protocol obtains the o...

متن کامل

Outage Probability Bound and Diversity Gain for Ultra-Wideband Multiple-Access Relay Channels with Correlated Noises

In this paper, Ultra-wideband (UWB) multiple access relay channel with correlated noises at the relay and receiver is investigated. We obtain outer and inner bounds for the IEEE 802.15.3a UWB multiple access relay channel, and also, a diversity gain bound. Finally, we evaluate some results numerically and show that noise correlation coefficients play important role in determining relay position.

متن کامل

A Tdma-based Mac Protocol Supporting Cooperative Communications in Wireless Mesh Networks

This paper proposes a TDMA-based medium access control protocol which enables cooperative communications in multi-hop wireless mesh networks. According to the proposed scheme, each router at the two-hop neighbourhood of each other is allocated to a specific time slot for accommodating either direct or cooperative transmissions in a coordinated manner, controlled by mini-slots which are part of ...

متن کامل

Bounds for Multiple-Access Relay Channels with Feedback via Two-way Relay Channel

In this study, we introduce a new two-way relay channel and obtain an inner bound and an outer bound for the discrete and memoryless multiple access relay channels with receiver-source feedback via two-way relay channel in which end nodes exchange signals by a relay node. And we extend these results to the Gaussian case. By numerical computing, we show that our inner bound is the same with o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1704.02837  شماره 

صفحات  -

تاریخ انتشار 2017